Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As quantum technologies transition out of the research lab and into commercial applications, it becomes important to better prepare students to enter this new and evolving workforce. To work toward this goal of preparing physics students for a career in the quantum industry, a senior capstone course called “Quantum Forge” was created at the University of Colorado Boulder. This course aims to provide students with a hands-on quantum experience and prepare them to enter the quantum workforce directly after their undergraduate studies. Some of the course’s goals are to have students understand what comprises the quantum industry and have them feel confident they could enter the industry if desired. To understand to what extent these goals are achieved, we followed the first cohort of Quantum Forge students through their year in the course in order to understand their perceptions of the quantum industry, including what it is, whether they feel that they could be successful in it, and whether or not they want to participate in it. The results of this work can assist educators in optimizing the design of future quantum-industry-focused courses and programs to better prepare students to be a part of this burgeoning industry. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Photovoice is a type of participatory action research in which individuals document their experiences through photography. Through the taking, captioning, and reflecting on photographs that they have taken, participants are able to affect change within their communities. Participants also take part in an interview or focus group about their photos at the end of the photovoice process in which they determine themes that appear in their photos, allowing them to participate in the research being done. We used the photovoice methodology in a small, project-based, upper-division, physics capstone course at the University of Colorado Boulder, in which students worked on an authentic industry project in partnership with a company in the quantum industry. As an example of the types of research results and benefits one could obtain using photovoice, we present a discussion of how we implemented the photovoice process within this course and present some of our results, including students’ experiences with the photovoice process. Photovoice may be particularly useful in understanding new, unique courses, as it allows students to co-create research that highlights ideas about the course that researchers would not know to ask about in more traditional research methodologies such as reflection questions. Published by the American Physical Society2024more » « less
-
Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.more » « less
An official website of the United States government
